Kondensierte Materie - Experimentelle Festkörperphysik

Pressemitteilung zu Neuartiger Oberflächensupraleitung in topologischem Material

18.12.2024|12:15 Uhr

Supraleiter

Supraleiter

Artikel in "Nature Communications"

Pressemitteilung

https://www.uni-wuppertal.de/de/news/detail/neuartige-oberflaechensupraleitung-in-topologischem-material-entdeckt/#gsc.tab=0

Eine ausführlicherere Mitteilung enthält die Dekanatsseite der Fachgruppe Physik:

https://fk4.uni-wuppertal.de/de/aktuelles/ansicht/neuartige-oberflaechensupraleitung-in-topologischem-material-entdeckt/

Kurze Erläuterung zum Artikel von Professor Christian Hemker-Heß sowie das Abstract des Artikels

„Unsere Resultate eröffnen beeindruckende Perspektiven für die Grundlagenforschung und zukünftige technologische Anwendungen, etwa im Bereich des Quanten-Computings“, sagt Prof. Dr. Christian Hemker-Heß vom Wuppertaler Lehrstuhl für Kondensierte Materie – Experimentelle Festkörperphysik.

Seit ihrer Entdeckung vor über hundert Jahren fasziniert das Phänomen der Supraleitung die Forschung. Ein Supraleiter ist ein Material, das Strom komplett ohne Widerstand leiten kann, wenn es kalt genug wird. Normalerweise geht beim Stromfluss Energie in Form von Wärme verloren, aber in einem Supraleiter fließt der Strom einfach, ohne Energie zu verlieren. Supraleitung ist essenziell für Anwendungen wie supraleitende Magnetspulen oder Quanteninterferometer, die für hochempfindliche Magnetfeldmessungen eingesetzt werden (z. B. in MRT-Geräten in Krankenhäusern).

Abstract

Topological superconductivity is a promising concept for generating fault-tolerant qubits. Early experimental studies looked at hybrid systems and doped intrinsic topological or superconducting materials at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Recent angle-resolved photoemission spectroscopy results have revealed that superconductivity in the type-I Weyl semimetal—trigonal PtBi2 (t-PtBi2)—is located at the Fermi-arc surface states, which renders the material a potential candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy, that t-PtBi2 presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists in magnetic fields up to 12 T.

Hier geht es zum Artikel in "Nature Communications"

https://www.nature.com/articles/s41467-024-54389-6

Weitere Infos über #UniWuppertal: